Colorimetric and Optical Discrimination of Halides by a Simple Chemosensor.

نویسندگان

  • Syed A Haque
  • Robert L Bolhofner
  • Bryan M Wong
  • Alamgir Hossain
چکیده

A thiophene-based tripodal copper(II) complex has been synthesized as a new colorimetric and optical chemosensor for naked-eye discrimination of halides in acetonitrile and an acetonitrile-water mixture. The binding interactions of the new receptor with several anions were analyzed by UV-Vis titrations, electrospray ionization mass spectrometric (ESI-MS) experiments and density functional theory (DFT) calculations. The results from UV-Vis titrations indicate that the coordinative unsaturated copper(II) complex strongly binds a halide at its vacant copper(II) centre via a metal-ligand bond forming a 1:1 complex, exhibiting binding affinities in the order of fluoride > chloride > bromide > iodide. The interactions of the receptor with halides were further confirmed by ESI-MS, showing a distinct signal corresponding to a 1:1 complex for each halide, suggesting that the noncovalent interactions also exist in the gas phase. In addition, time-dependent DFT (TD-DFT) calculations were also carried out to understand the excited-state properties of the chemosensor complexes. A detailed analysis of the TD-DFT calculations shows a consistent red-shift in the first optically-allowed transition, consistent with the observed colorimetric experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene Oxide-terpyridine Conjugate: A Highly Selective Colorimetric and Sensitive Fluorescence Nano-chemosensor for Fe2+ in Aqueous Media

A graphene oxide-terpyridine conjugate (GOTC) based colorimetric and fluorescent nano-chemosensor was synthesized. It showed high selectivity and sensitivity for Fe2+ and Fe3+ ions in neutral aqueous solution over other metal ions such as Li+, Na+, Ba2+, Ca2+, Al3+, Cd2+, Co2+, Cu2+, Hg2+, Mn...

متن کامل

A novel colorimetric and fluorescent chemosensor for anions involving PET and ICT pathways.

A novel colorimetric and fluorescent chemosensor ADDTU-1 bearing dual receptor sites, which shows specific optical signaling for AcO-, H2PO4-, and F- over other anions and dual response toward AcO- and F- via PET and ICT mechanisms, is described. [structure: see text]

متن کامل

Naphthalene-based Azo-azomethine Chemosensor: Naked Eye Detection of Fluoride in Semi-aqueous Media

A new azo-azomethine chemosensor containing active phenolic sites, H2L, has been designed and synthesized for rapid detection of inorganic fluoride over the other anions, such as Clˉ, Brˉ, Iˉ, AcOˉ, H2PO4ˉ, NO3ˉ, N3ˉ in DMSO/water (90/10) media. The 1H NMR titration revealed that the colorimetric response was considered to be the direct consequence of hydrogen-bond formation between phenolic gr...

متن کامل

A Rapid In Situ Colorimetric Assay for Cobalt Detection by the Naked Eye

A simple, rapid, and convenient colorimetric chemosensor of a specific target toward the end user is still required for on-site detection and real-time monitoring applications. In this study, we developed a rapid in situ colorimetric assay for cobalt detection using the naked eye. Interestingly, a yellow to light orange visual color transition was observed within 3 s when a Chrysoidine G (CG) c...

متن کامل

A Dual colorimetric and Fluorometric Anion Sensor Based on Polymerizable 1, 8-Naphthalimide Dye

A new polymerizable fluorescent sensor based on the photoinduced electron transfer PET for the selective determination of fluoride ions in DMF solutions has been synthesized. The sensing system was prepared by incorporating 4-Amino-1,8-naphthalimide derivatives containing thiourea side chain at the amino moiety AFTN as a neutral F- selective flourophore and was characterized by use of the DSC, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RSC advances

دوره 5 48  شماره 

صفحات  -

تاریخ انتشار 2015